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Abstract. Phonon effects in tunnelling through a double quantum dot molecule are investigated by use
of a recently developed technique, which is based on an exact mapping of a many-body electron-phonon
interaction problem onto a multichannel one-body problem. The molecule is sandwiched between two ideal
electrodes and the electron at each dot of the molecule interacts independently with Einstein phonons.
Single-electron transmission rates through the molecule are computed and the nonlinear spectrum obtained
shows a structure with many more satellite peaks due to the excitations of phonons. The strength of
resonant peaks is found to be strongly dependent on the number of excited phonons. The effects of electron-
phonon interaction on the current and shot noise, depending on the voltage bias applied at the two
electrodes as well as the potential energy of the molecule, are discussed.

PACS. 71.38.+k Polarons and electron-phonon interactions – 73.23.Hk Coulomb blockade; single-electron
tunneling – 73.50.Bk General theory, scattering mechanisms – 03.65.-w Quantum mechanics

1 Introduction

In recent years, modern advanced nanotechnology and
progress in molecular electronics have made it possible
to design and fabricate single-molecule devices, which has
renewed interest in tunnelling through a mesoscopic sys-
tem with electron-electron and/or electron-phonon inter-
actions. A molecular device exhibiting switching behavior
with large on-off ratios is an example [1]. Although the
mechanism of the electron conduction on such a single-
molecule device is not well understood yet, a series of ex-
periments were reported [1–6], that suggest the quantum
nature of transport properties have been observed, some
of which suggest that vibrational modes play a role in
transport processes [5,6]. Particularly, inelastic scattering
effects have been observed directly in scanning tunnelling
microscopy (STM) of the differential conductance of a
molecule absorbed on metallic substrates [7–9]. The im-
portance of coupling between electron and phonon in dou-
ble quantum dot systems has been demonstrated [10,11].
For example, for freely suspended quantum dot cavities
conductance near zero bias is completely suppressed as
single electron tunnelling produces the excitation of a dis-
crete cavity phonon [12]. Besides the experimental work,
there are also lots of theoretical investigations on elec-
tronic tunnelling through molecules, in which the electron-
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phonon interaction is considered [13–25]. Among those
works, some were based on ab initio [13–15] or semi-
empirical methods [16–18], and some made use of vari-
ous models to treat the tunneling problems in terms of
the nonequilibrium Green’s function techniques [19–22],
the Fermi golden rule [23], and the Kinetic-equation ap-
proach [24,25].

For inelastic scattering processes with the emission
and/or absorption of a phonon, the many-body problem
involving electron states and various excited phonon states
of the system, which consists of a mesoscopic conduc-
tor coupled with phonon modes as well as two single-
channel ideal leads (acting as the electron source and drain
respectively) attached to its two ends, can be mapped
onto an exactly solvable multichannel single-electron scat-
tering problem according to the work by Bonca and
Trugman [26]. In the light of this technique, some theoret-
ical investigations of phonon effects in electron tunnelling
through some electron-phonon interacting systems have
been reported [26–34], where the electron-phonon interac-
tion is described either by the Holstein model [35] (where
the electrons are coupled with an Einstein phonon mode at
each site) or by the Su-Schreiffer-Heeger (SSH) model [36]
(where the electrons are coupled with the phonon modes
on bonds).

In this work we study a double quantum dot molecule
sandwiched between two ideal leads. In the molecule,
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each dot has a single electronic level at which the elec-
tron interacts with an associated Einstein phonon mode.
We use the above mentioned mapping technique [26] to
investigate the inelastic electron tunnelling through the
electron-phonon interacting molecule by computing the
single-electron transmission rates. The nonlinear spectrum
obtained shows a structure with many more satellite peaks
due to the excitations of phonons. The effects of electron-
phonon interaction on the current and shot noise, depend-
ing on the voltage bias applied at the two electrodes as well
as the potential energy of the molecule, are discussed.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the Hamiltonian for the tunnelling
through the molecule and describe the theoretical method
adopted in this work. In Section 3, we give the numerical
results from the calculation within the framework given
in Section 2. Finally, a summary is presented in the last
section.

2 Model and method

The Hamiltonian H of the system we consider in this work
can be written as follows:

H = HM +HL
lead +HR

lead +HL
int +HR

int, (1)

where

HM =
2∑

i=1

(ε0c
†
ici + ω0b

†
i bi) − t(c†1c2 + c†2c1)

+λ
2∑

i=1

(b†i + bi)c
†
i ci (2)

describes the double quantum dot molecule, in which each
dot has a single electronic level (with energy ε0) and the
electron at the level couples with an Einstein phonon
mode (with the same phonon frequency ω0), c

†
l (cl) de-

notes the electron creation (annihilation) operator on site
i and b†i (bi) for the phonon modes (i = 1, 2), t is the hop-
ping constant between the two dots and λ is the coupling
between the electron and phonon at the same site. At the
two ends of the molecule, the ideal leads are considered as
a chain of metallic atoms, then the Hamiltonians for the
left and right leads are given as:

HL
lead = ε+

0∑

l=−∞
c†l cl − t0

−1∑

l=−∞
(c†l cl+1 + h.c), (3)

HR
lead = ε−

∞∑

l=3

c†l cl − t0

∞∑

l=3

(c†l cl+1 + h.c), (4)

where the potentials ε± at the left (right) lead are given
by ε± = ±eV/2, V is the voltage bias applied at the left
and right lead and e the absolute value of electron charge.
The electrons in the metallic leads hop from one site to its
nearest-neighbor site with the hopping parameter t0. The

coupling between the molecule and the leads are described
simply by

HL
int = −Γ (c†0c1 + c†1c0), (5)

HR
int = −Γ (c†2c3 + c†3c2), (6)

where Γ is the coupling strength between the molecule
and its associated leads.

Following the technique [26] that maps a many-body
problem onto a multichannel one-body problem, we con-
sider an incident electron moving through the molecule
from the left lead to the right lead by solving exactly the
Schrödinger equation Hψ = Eψ. An incident electron en-
ters into the left lead at one of the channels, such as chan-
nel n, then it elastically or inelastically goes into the right
lead at one time at the channel n′, where n and n′ could be
taken as the number of excited phonons before and after
the scattering. Now we can write down the wave function
for the electron as

|ψ〉n = |ψ〉nL + |ψ〉nM + |ψ〉nR, (7)

where

|ψ〉(n)
L =

0∑

j=−∞
eiknj |j〉 ⊗ |n〉

+
∑

n′
rn,n′

0∑

j=−∞
eikn′

j |j〉 ⊗ |n′〉 (8)

describes the incident electron and the reflection from the
molecule,

|ψ〉(n)
M =

∑

n′

2∑

j=1

un,n′
j |j〉 ⊗ |n′〉 (9)

gives the wave function at the molecule, and

|ψ〉(n)
R =

∑

n′
tn,n′

∞∑

j=3

eikn′
j |j〉 ⊗ |n′〉 (10)

are the wave function of the outgoing electron at the right
lead. In those wave functions, |j〉 indicates an electron
occupying the j-th site and |n〉 is a phonon state of the
molecule with the total number of phonons as n, rn,n′

and tn,n′ represent the reflection and transmission ampli-
tudes. The incident wave vector kn and reflecting (outgo-
ing) wave vector kn′

are restricted by the energy conser-
vation

ε+ − 2t0 cos(kn) + nω = ε± − 2t0 cos(kn′
) + n′ω, (11)

which is the eigen-energy E in the Schrödinger equa-
tion. Now we can obtain rn,n′ and tn,n′ by solving
the Schrödinger equation self-consistently, the maximum
number of phonons Nph is taken as large as the result
reaches convergence.
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Fig. 1. Total transmission rate as a function of the
incident electron energy at zero temperature. The
solid line is for the molecule with the e-p interaction
while the dashed line is for that without phonons.
The numbers above peaks give the value of incident
energies while that in square brackets gives the mean
number of excited phonons. The model parameters
are taken as λ = 0.7, ω0 = 1.0, ε0 = 0, V = 0, and
Γ = 0.5.

With the transmission and reflection amplitudes for
each scattering channel we have the elements of transmis-
sion and reflection matrices as[29]

T (n,n′)(ε, ε′) = |tn,n′ |2 sin kn′
R

sin kn
L

, (12)

R(n,n′)(ε, ε′) = |rn,n′ |2 sin kn′
L

sin kn
L

, (13)

where ε (ε′) represents the incoming (outgoing) electron
energies, i.e., ε ≡ −2t0 cos(kn) and ε′ ≡ −2t0 cos(kn′

). The
total transmission rate should be a sum of those single-
channel rates over all incoming channels n weighted by
the probability P (n) = P (n1)P (n2) with P (ni) = (1 −
e−βω0)e−niβω0 (i = 1, 2) and all outgoing channels n′

T (ε) =
∑

n,n′
P (n)T (n,n′)(ε, ε′). (14)

For the case when a finite bias voltage is applied to the
molecule, the one-electron approximation can be adopted
in the calculation of the total electronic current through
the molecule, which can be measured experimentally,

I =
e

h

∫
dε

∑

n,n′
T (n,n′)(ε, ε′) [P (n)fL(ε) (1 − fR(ε′))

−P (n′)fR(ε′) (1 − fL(ε))] , (15)

where fL and fR are the electron Fermi distribution
functions for the left and right leads, respectively. Fur-
thermore, from scattering theory, the total shot noise
of the current through the double dot molecule is given

by [34,37,38]

S =
2e2

h

∫
dε

∑

n,n′
T (n,n′)(ε, ε′)

×
{
T (n,n′)(ε, ε′)

{
P (n)fL(ε) [1 − fL(ε′)]

+ P (n′)fR(ε′) [1 − fR(ε)]
}

+ R(n,n′)(ε, ε′)
{
P (n)fL(ε) [1 − fR(ε′)]

+ P (n′)fR(ε′) [1 − fL(ε)]
}}
. (16)

The summation over the outgoing channels n′ indicates
that we have included contributions from both the elastic
and inelastic scattering. By restricting n′ = n, we can
obtain those quantities contributed only by the elastic
transmission. Finally in the end of this section we give
the definition of the Fano factor [34,37,38]:

F =
S

2eI
. (17)

3 Numerical results

In this section we present the numerical results on the
transmission rates, currents and shot noise together with
the analysis on the effects of electron-phonon interactions.
We will take t = 1, i.e., the unit of energies is taken
as t, the hopping constant between the two dots in the
molecule. Furthermore, we consider the leads having an
energy band that is almost flat in the vicinity of Fermi
points, for which we take t0 = 10, a large enough value in
the calculations.

3.1 Transmission

First of all we show the total transmission rate as a func-
tion of the incidence electron energy ε at zero tempera-
ture in Figure 1. It is clear that the molecule contains no
phonons before the electron tunnelling, so only phonon
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Fig. 2. (a) The eigenvalues of the transformed Hamiltonian H1

for the molecule as functions of the phonon frequency ω0. The
sign S (A) indicates the states being symmetric (antisymmet-
ric). (b) The mean number of excited phonons at corresponding
eigenstates. λ = 0.7.

emission processes are allowed at zero temperature. In the
absence of electron phonon interaction there are two peaks
that appear in the transmission spectrum, they should be
corresponding to the resonant energy levels ε0 ± t (ε0 = 0
in Fig. 1), which are the bonding and anti-bonding states
in the molecule. In the presence of the coupling between
the electron and phonon, these two peaks are shifted and
many side peaks can been seen in the spectrum which
should indicate many more resonant states exist in the
molecule now.

To understand the origin of those states, we make a
transformation on the molecule Hamiltonian and decou-
ple it into two parts H1 and H2 (see Appendix A). While
H2 gives the spectra nω0 of free phonons, H1 can be di-
agonalized by a numerical method, the results are shown
in Figure 2. Due to the symmetry of the two dots ex-
change, the eigenstates are either symmetric or antisym-
metric, we use S and A to indicate these states’ sym-
metries in the figure. It is clear that there is only level
crossing between S and A states. No crossing occurs for

states of the same symmetry. It should be very easy to
expect that at anti-adiabatic limit (ω0 → ∞), the low-
est two states of H1 should have energies ±t − λ2/ω0,
which should evolve from the bonding and anti-bonding
states in the absence of the e-p interaction. But from Fig-
ure 2a, we see it is not true. At ω0 = 1, the 2A state is
closest to the line t − λ2/ω0 while the 1S is always clos-
est to the line −t − λ2/ω0. This fact indicates that the
most weighted two peaks in the transmission spectrum
(solid line in Fig. 1) are not simply evolved from the two
peaks in the absence of the e-p interaction (dashed line in
Fig. 1). The first one (indicated by A0) is caused by the
1S state, which is evolved from the bonding state. With
the contribution of H2, we identify the peak A1 and A2,
which correspond to the 1S state with one and two more
excited-phonons (d1 mode). It is clear that the energy of
the resonant peak An is ε(An) = ε0 − t − λ2/ω0 + nω0.
The resonant strength is decreased with the increase of
the excited-phonon number. Figure 2b shows the mean
number of excited phonons 〈d†2d2〉 at corresponding eigen-
states of H1. The resonant peak B0 in Figure 1 is due to
the 2A state, which has a lower value of excited phonons
than that in the 1A state. Similarly, we identify B1 and B2

together with B0 as the first three peaks in the series ofBn

of the energy ε(Bn) = ε0 + t−λ2/ω0 +nω0. The peaks An

or Bn represent the processes accompanying with emission
of n bare phonons. The peak C at ε = −0.59 is due to the
1A state of the number of excited phonons 0.95. A very in-
teresting fact is that the strength of resonant peaks in the
transmission spectra is strongly dependent on the mean
number of excited phonons at the corresponding states,
i.e., the strength of the resonant transmission decreases
with the increase of the number of excited phonons. An
exception is the peak D at ε = 1.13, which is clearly due
to the 3A state of the number of excited phonons 2.4, the
strength of the peak D is larger than that of the peak
C. This exception may be caused by the mixing of the
2A and 3A states due to the coupling between the leads
and molecule. We will see later that the exception will not
appear at Figure 3 with other value of ω0 where the two
states are not closed again.

From Figure 3, we see that the first resonant peak A0

due to the 1S state as well as other peaks in the series
of An stand almost unchanged with different values of the
phonon frequency ω0. But the resonant peak B0 as well as
other peaks in the series of Bn are changed significantly
and B0 is caused by the 4A, 3A, 2A, and 1A states ,
respectively, with the increase of the phonon frequency
ω0 from 0.52 to 3.0 in Figure 3. We can see the resonant
peak C is caused by the 1A state in Figures 3a–3c while
the peak C is just the B0 in Figure 3d. For those cases, we
see the fact the higher resonant peaks correspond to the
states with a smaller number of excited phonons without
exception.

3.2 Current and shot noise

We now present the calculated current and shot noise for
the system. In Figure 4, we plot the currents (a) and shot
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Fig. 3. The same as in Figure 1 but for for different phonon frequency ω0.

noises (b) as functions of the bias voltage V between the
two leads. In comparison, we also draw the current and
shot noise in the absence of the electron-phonon inter-
action in Figure 4c. Comparing Figure 4a and 4b, we
find that along with the increasing bias voltage V , the
current and shot noise show similar varying characteris-
tics. Without regard to coupling between electrons and
phonons, the step structures in Figure 4c only rest on
the molecule’s potential energy ε0, the position of peaks
in differential conductance dI/dV and differential shot
noise dS/dV (thin lines in Fig. 4d) correspond to the con-
dition V = ε+ − ε− = 2t. However, many more steps
appear in the current and shot noise once the electron
phonon interaction is turned on. In correspondence with
these new steps more resonant peaks in differential cur-
rent and differential shot noise (thick lines in Fig. 4d) are
presented due to the contributions of the phonon emis-
sion (and the absorption at non-zero temperature), which
implies new opened pseudo-channels have contributed to
the tunnelling process. Actually, these characters have al-
ready been seen in Figure 1. By looking into the graph
of differential shot noise, we can find a sunken shape in
the absence of the electron phonon interaction. In the ex-
pression of shot noise, this contains [T (1−T )] [38], which
means that the expression has an extremum if T is big
enough. However, no sunken shape appears in Figure 4d
in the presence of the electron phonon interaction, since
the transmission rate is reduced significantly by the in-
teraction. As long as the e-ph coupling is weak enough or
the phonon frequency is very large, the shape will appear
again in the differential shot noise.

As the definition in equation (17), the Fano factor F
is the ratio of actual shot noise and the Poisson noise that

would be measured if the system produced the noise due
to single independent electrons [37]. It is clear that neither
closed (T n = 0, F = 1) nor open (T n = 1, F = 0) chan-
nels contribute to shot noise, the maximal contribution
to shot noise comes from channels with T n = 1/2 [37].
Figure 5 presents the bias-dependent Fano factor for the
molecule system. In the absence of the electron phonon
interaction, the Fano factor shows a very simple structure
since the Fermi surface is at the middle of two resonant
energy levels in the double dot molecule. The electron-
phonon interaction results in an enhancement and more
fine structures in the Fano factor.

4 Summary

In summary, we have extended a numerical method to
exactly resolve the tunnelling process through a double
quantum dot molecule (a multi-dot problem could be
treated in the same way) by mapping a many-body elec-
tron phonon interaction problem onto a multichannel sin-
gle electron scattering problem. The result shows that,
this tunnelling process through the double dot molecule
can not be understood simply as the addition of two
independent tunnelling processes through a single dot
molecule due to the complex energy-level structure of the
molecule. Since the approach is entirely based on a one-
electron approximation, the result presented here would
be realized only for a finite applied bias voltage, which
is fortunately at the range of interests for applications.
Even though the results are obtained on the basis of a
zero-temperature calculation, they can easily be general-
ized to cases at any finite temperatures. Single-electron
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Fig. 4. The calculated current I and shot noise S as functions
of the bias voltage V in the presence (a, b) and absence (c) of
the e-p interaction for various energies ε0 on the molecule. (d)
The differential conductance dI/dV (dashed line) and differ-
ential shot noise dS/dV (solid line) at ε0 = 0 in the presence
(thick lines) and absence (thin lines) of the e-p interaction. All
parameters but the voltage bias are taken to be the same as
that in Figure 1.

transmission rates through the molecule shows a struc-
ture of many more satellite peaks due to the excitations
of phonons. The strength of resonant peaks is found to
be strongly dependent on the number of excited phonons.
The effects of electron-phonon interaction on the current
and shot noise, depending on the voltage bias applied at
the two electrodes as well as the potential energy of the
molecule, are discussed.

Fig. 5. Fano factor as a function of the voltage bias V with
(solid line) and without (dashed line) electron phonon interac-
tion. The parameters are the same as in Figure 1.
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Appendix A: Exact solution of the double
quantum dot molecule

To get the exact solution of the double quantum dot
molecule, HM in equation (2), we first consider the sym-
metry of the two dots, i.e., we make transformation on the
both of electron and phonon operators,

c1 =
1√
2
(a1 + a2), c2 =

1√
2
(a1 − a2),

b1 =
1√
2
(d1 + d2), b2 =

1√
2
(d1 − d2),

(A.1)

the Hamiltonian HM becomes

HM = (ε0 − t)a†1a1 +
λ√
2
(d†1 + d1)a

†
1a1 + ω0d

†
1d1

+(ε0 + t)a†2a2 +
λ√
2
(d†1 + d1)a

†
2a2

+
λ√
2
(d†2 + d2)(a

†
1a2 + a†2a1) + ω0d

†
2d2, (A.2)

where a1 and d1 are symmetric while a2 and d2 are anti-
symmetric. Now we can see that the first two lines in the
above Hamiltonian show two separated dots each coupled
with a phonon mode, which can be diagonalized through a
canonical transformation [21,39] while the third line in the
above equation will not be changed if we use the same op-
erators for renormalized ones, the resultant Hamiltonian
can be written as two decoupled parts:

H̄M = H1 +H2, (A.3)
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where

H1 = (ε0 − t− λ2

2ω0
)a†1a1 + (ε0 + t− λ2

2ω0
)a†2a2

+
λ√
2
(d†2 + d2)(a

†
1a2 + a†2a1) + ω0d

†
2d2, (A.4)

H2 = ω0d
†
1d1. (A.5)

For H1, we can make a numerical diagonalization to ob-
tain all eigen-states while H2 gives the bare phonon spec-
tra nω0 with n all non-negative integers as in the single
quantum dot case where a similar part exists [21].
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